II Relation d'équivalence

II.1 Définition

Définition 2.1 On dit que f est équivalente à g en a si $f(x) - g(x) = \mathop{o}\limits_{x \to a} (g(x))$.

On note alors $f(x) \underset{x \to a}{\sim} g(x)$.

Écrire les traductions quantifiées de cette définition (cas $a \in \mathbb{R}$, $a = +\infty$ et $a = -\infty$.)

Proposition 2.2 Si f = g + h et si $h(x) = \underset{x \to a}{o}(g)$, alors $f(x) \underset{x \to a}{\sim} g(x)$.

Proposition 2.3 Il y a équivalence entre les énoncés :

- (i) $f(x) \underset{x \to a}{\sim} g(x)$;
- (ii) Il existe une fonction m telle que
 au voisinage de a, f(x) = m(x)g(x);
 $\lim_{x \to a} m(x) = 0$.

Preuve : Comme pour les autres relations de comparaison, on remarque que sur un voisinage de a, on a $g(x)=0 \Rightarrow f(x)=g(x)=0$. On définit alors sur ce voisinage $m(x)=\begin{cases} f(x)/g(x) & \text{si } g(x)\neq 0 \\ 1 & \text{si } g(x)=0 \end{cases}$, et on vérifie que cette fonction convient.

Corollaire 2.4 Dans le cas où g ne s'annule pas au voisinage de a, il y a équivalence entre les énoncés :

- (i) $f(x) \underset{x \to a}{\sim} g(x)$;
- (ii) $\lim_{x \to a} \frac{f(x)}{g(x)} = 1.$

Proposition 2.5 La relation « $\sim \atop x \to a$ » est une relation d'équivalence sur l'ensemble des fonctions définies au voisinage de a.

Preuve : Cela résulte facilement de la proposition 2.3.

Exemples:

- 1. Si $P = \sum_{k=p}^{n} a_k X^k$ avec $p \le n \in \mathbb{N}$, $a_p \ne 0$ et $a_n \ne 0$, alors $P(x) \underset{x \to \pm \infty}{\sim} a_n x^n$ et $P(x) \underset{x \to 0}{\sim} a_p x^p$.
- 2. Pour $p \in \mathbb{N}^*$, $x^p a^p \underset{x \to a}{\sim} pa^{p-1}(x a)$.

Proposition 2.6 On suppose que $f(x) \underset{x \to a}{\sim} g(x)$.

- 1. $Si \lim_{x \to a} g(x) = \ell \in \overline{R}, \ alors \lim_{x \to a} f(x) = \ell.$
- 2. Si $g(x) \ge 0$ au voisinage de a, alors $f(x) \ge 0$ au voisinage de a.
- 3. Si $g(x) \neq 0$ au voisinage de a, alors $f(x) \neq 0$ au voisinage de a.

Preuve: cela résulte encore de 2.3 puisque si m tend vers 1 en a, alors au voisinage de a, $m(x) \ge 1/2 > 0$.

Remarques

- 1. Écrire « $f(x) \sim_{x \to a} g(x)$ »signifie que f s'annule sur tout un voisinage de a. C'est donc une situation très rare et généralement, une telle écriture traduit un calcul faux.
- 2. Lorsqu'on écrit un équivalent, seul un terme significatif à du sens : $e^x \sim 1 + x$, mais aussi $e^x \sim 1 + 7x$ ou encore $e^x \sim 1 + \sqrt{|x|}$.

II.2**Opérations**

1. Si $f_1(x) \underset{x \to a}{\sim} g_1(x)$ et $f_2(x) \underset{x \to a}{\sim} g_2(x)$, alors $f_1(x) f_2(x) \underset{x \to a}{\sim} g_1(x) g_2(x)$.

2. Si $f(x) \underset{x \to a}{\sim} g(x)$ et si g ne s'annule pas au voisinage de a, alors $\frac{1}{f(x)} \underset{x \to a}{\sim} \frac{1}{g(x)}$.

Preuve: encore une fois, il suffit d'appliquer 2.3.

Remarque ATTENTION : les équivalents de s'additionnent pas!

(C'est souvent ainsi que l'on obtient un équivalent nul (et donc quasi-certainement faux).)

II.3Obtention d'équivalents

Proposition 2.8 Si f est dérivable en a et si $f'(a) \neq 0$, alors $f(x) - f(a) \sim f'(a)(x-a)$.

Preuve : Si f est dérivable en a, alors $\lim_{x\to a} \frac{f(x)-f(x)}{x-a} = f'(a)$ et donc si $f'(a) \neq 0$, $\lim_{x\to a} \frac{f(x)-f(x)}{f'(a)(x-a)} = 1$ et on applique le corollaire 2.4.

 $\begin{array}{lll} \textbf{Exemples:} & 1. \ e^x - 1 \underset{x \to 0}{\sim} x \,; & 5. \ \tan(x) \underset{x \to 0}{\sim} x \,; \\ & 2. \ \ln(1+x) \underset{x \to 0}{\sim} x \,; & 6. \ \arcsin(x) \underset{x \to 0}{\sim} x \,; \\ & 3. \ (1+x)^{\alpha} - 1 \underset{x \to 0}{\sim} \alpha x \,; & 7. \ \arctan(x) \underset{x \to 0}{\sim} x \,; \\ & 4. \ \sin(x) \underset{x \to 0}{\sim} x \,; & 8. \ \sin(x) \underset{x \to 0}{\sim} x \,; \end{array}$

9. $th(x) \underset{x\to 0}{\sim} x$;

10. $\operatorname{argsh}(x) \underset{x \to 0}{\sim} x$;

11. $\operatorname{argth}(x) \sim x$.

Dans certains cas où f'(a) = 0, on peut utiliser la formule de Taylor-Young. On obtient ainsi par exemple :

1. $\cos(x) - 1 \underset{x \to 0}{\sim} -\frac{x^2}{2}$;

3. $((1+x)^{\alpha}-1-\alpha x) \sim_{x\to 0} \alpha(\alpha-1)\frac{x^2}{2}$.

2. $\operatorname{ch}(x) - 1 \sim_{x \to 0} \frac{x^2}{2}$;

II.4 Substitution

En général, on ne par par composer les équivalents :

si $f(x) \underset{x \to a}{\sim} g(x)$, il n'y a a priori aucune raison pour que $h(f(x)) \underset{x \to a}{\sim} h(g(x))$.

(Sous certaines conditions, on peut cependant, dans des cas particuliers, prouver des résultats de ce genre.).

Exemples:

- 1. En $a = +\infty$, prendre $f: x \mapsto x + 1$, $g: x \mapsto x$ et $h = \exp$;
- 2. En $a = 0^+$, prendre $f: x \mapsto \ln(x), g: x \mapsto \ln(x) + 3$ et $h = \exp$;
- 3. Un exemple de condition favorable : démontrer que si $\lim_{x\to a} (f(x)-g(x)) = 0$, alors $\exp(f(x)) \sim \exp(g(x))$.

En revanche, on pourra substituer une fonction dans un équivalent :

Proposition 2.9 Si $\lim_{t\to b} u(t) = a$ et si $f(x) \underset{x\to a}{\sim} g(x)$, alors $f(u(t)) \underset{t\to b}{\sim} g(u(t))$.

Preuve: à nouveau, on utilise la proposition 2.3 et la composition des limites.

Exemples de calculs de limites II.5

Déterminer les limites suivantes :

5. $\lim_{x\to 0} \frac{x \ln(1+x)}{\arctan(x) \tan(x)};$

1. $\lim_{x \to 0} \frac{e^{\sin(x)} - 1}{x};$ 2. $\lim_{x \to 0} \frac{\ln(\cos(x))}{(\arcsin(x))^2};$

3. $\lim_{x \to 0} (1 + \sin(x))^{1/x}$; 4. $\lim_{n \to +\infty} \left[\ln(1 + e^{-n^2}) \right]^{1/n}$;