Problème

On s'intéresse à l'équation différentielle

(E)
$$xy'' - y' - 4x^3y = x^3 \operatorname{sh}(x^2)$$
.

On note S l'ensemble des solutions de (E), (E_0) l'équation homogène associée à (E) et S_0 l'ensemble des solutions de (E_0) . On notera D le domaine sur lequel on résout (E) (non déterminé explicitement pour le moment).

P.1 Propriétés générales

- 1. Démontrer que S_0 est un sous-espace vectoriel de $\mathcal{F}(D,\mathbb{R})$.
- 2. On suppose connue $f \in \mathcal{S}$. Exprimer \mathcal{S} en fonction de \mathcal{S}_0 et de f. On démontrera ce résultat.

P.2 Une étude de fonction

Dans toute la suite du problème, a est l'application définie dans cette partie.

- 1. Donner le domaine de dérivabilité et l'expression de la dérivée de $a: x \mapsto \operatorname{ch}(x^2)$.
- 2. Justifier que sur ce domaine a est deux fois dérivable et calculer a''.
- 3. Tracer (grossièrement, sans outils : l'allure me suffit) le graphe représentatif de a.
- 4. Déterminer l'intervalle réel maximal I sur lequel a définie une bijection. (s'il y a plusieurs choix, on prendre l'intervalle contenant des réels positifs et si possible 0.)
- 5. On note φ la restriction de a à l'intervalle I. Donner une expression explicite de φ^{-1} , déterminer le domaine de dérivabilité et donner une expression de la dérivée de φ^{-1} .
- 6. Tracer le graphe représentatif de φ^{-1} . Représenter le graphe de a sur ce nouveau dessin et expliquer le lien entre les deux courbes.

P.3 Calcul de dérivées de quelques fonctions

Dans toute la suite du problème, b, c et d sont les applications définies dans cette partie.

- 1. Donner le domaine de dérivabilité et l'expression de la dérivée de $b: x \mapsto \operatorname{sh}(x^2)$. Justifier que sur ce domaine b est deux fois dérivable et calculer b''.
- 2. Donner le domaine de dérivabilité et l'expression de la dérivée des fonctions :

(a)
$$c: x \mapsto \ln\left(\frac{\left(\cosh(x^2)\right)^2}{x}\right);$$

(b) $d: x \mapsto \operatorname{th}(x^2)$.

P.4 Résolution de (E) en se ramenant à une équation d'ordre un

1. Démontrer que $a \in \mathcal{S}_0$.

On va s'inspirer de la méthode de la variation de la constante et chercher des solutions de (E) sous la forme $f(x) = \lambda(x)a(x)$.

- 2. Soit f une fonction définie sur \mathbb{R} .
 - (a) Justifier l'existence d'une application λ telle que $\forall x \in \mathbb{R}, f(x) = \lambda(x)a(x)$.
 - (b) Justifier que f est deux fois dérivable si et seulement si λ l'est.
- 3. Soit $f \in \mathcal{D}^2(D,\mathbb{R})$. Démontrer l'équivalence entre les énoncés :
 - (i) $f \in \mathcal{S}$;
 - (ii) λ' est solution de l'équation différentielle $(F) x \operatorname{ch}(x^2) y' + (4x^2 \operatorname{sh}(x^2) \operatorname{ch}(x^2)) y = x^3 \operatorname{sh}(x^2)$.
- 4. Résoudre l'équation différentielle (F). On prendra soin de préciser le domaine de résolution.
- 5. En déduire S.

P.5 Résolution de (E) par variations DES constantes

1. Vérifier que $b \in \mathcal{S}_0$. En déduire que $\{x \mapsto \lambda a(x) + \mu b(x) \mid \lambda, \mu \in \mathbb{R}\} \subset \mathcal{S}_0$, le domaine de définition étant $D = \mathbb{R}$.

On admet que $S_0 = \{ x \mapsto \lambda a(x) + \mu b(x) \mid \lambda, \mu \in \mathbb{R} \}$. (ceci a en fait été démontré dans la partie précédente, en prenant un second membre nul au lieu de x^3 sh (x^2) .)

Comme pour la méthode de variation de la constante dans le cas d'une équation d'ordre 1, on va chercher une solution de (E) sous la forme $f(x) = \lambda(x)a(x) + \mu(x)b(x)$, les fonctions λ et μ étant dérivables.

2. Calculer f'(x) pour $x \in \mathbb{R}$. En déduire pour quoi il est intéressant de poser comme première condition sur λ et μ l'équation suivante :

(C1)
$$\lambda'(x)a(x) + \mu'(x)b(x) = 0.$$

3. Supposant (C1) vérifier, calculer f''(x) pour $x \in \mathbb{R}$. En déduire que si f appartient à S, alors λ et μ vérifient également l'équation

(C2)
$$\lambda'(x)a'(x) + \mu'(x)b'(x) = x^2 \operatorname{sh}(x^2).$$

- 4. Résoudre le système constitué par les équations (C1) et (C2), dont les variables sont $\lambda'(x)$ et $\mu'(x)$. Donner la valeur explicite de $\lambda'(x)$ et de $\mu'(x)$ pour tout réel x.
- 5. Déterminer des fonctions λ et μ qui conviennent.
- 6. En déduire f et vérifier que $f \in \mathcal{S}$.
- 7. Conclure : donner l'ensemble \mathcal{S} . Vérifier que le résultat est le même que celui obtenu en 5